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Abstract

The total energies of atoms and with atomic number Z from 1 to 92 and

singly-charge cations with Z from 2 to 92 have been calculated to an accu-

racy of 1 µHartree within four variants of the Kohn-Sham local-density ap-

proximation. The approximations considered are: the local-density approx-

imation, the local-spin-density approximation, the relativistic local-density

approximation, and the scalar-relativistic local-density approximation. The

total energies for the LDA are found to be in 0.1% agreement with a large-

atomic-number expansion from many-body theory for Z ≥ 40. Comparison

to experiment is made for the ionization energies and spin-orbit splittings;

also the total energies and eigenvalues of the various theories are compared

among themselves.
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I. INTRODUCTION

The Kohn-Sham local-density approximation (LDA) and its variants are widely used in

ab initio computations of materials properties [14]. This approximation has a demonstrated

ability to produce results that, as regards predictive value for ground-state electronic struc-

ture, are frequently competitive with the best methods of quantum chemistry. In addition,

they have superior scaling properties [1], and so can be applied to much larger systems.

As density-functional approaches become more widespread, there will be a need for

benchmark data comparable to those which are available for traditional quantum chemistry.

Those who are attempting to solve very large problems, utilizing a range of approximations,

will want to distinguish the uncertainties that derive from numerical implementation from

those that are inherent in the basic formalism. We have therefore initiated a project to gen-

erate reference data that describes results obtained in well-defined, standard approximations

with certified numerical accuracy.

There does not appear to have been a comparable effort for LDA in the past. In 1963,

Herman and Skillman published self-consistent field solutions across the period table [12],

using recognizably modern techniques (i.e., computers programmed with Fortran) capping

an effort which had been pursued since the early days of quantum mechanics, particularly

by Hartree [11]. Herman and Skillman used an early local-density theory due to Slater

[31] which was introduced as an approximate Hartree-Fock theory. In the spirit of the

Hartree-Fock, an attractive 1/r tail was introduced at large radius to account for exchange

in the low-density limit [18]. Shortly thereafter, these results were extended to relativistic

systems using the same nonrelativistic exchange-correlation functional [20]. Relativistic

functionals were only to become available in the next decade [22,27,28]. Also in the 1970’s,

spin-polarization was introduced to local-density functional theory [34].

Various surveys of LDA results for large parts of the periodic table have appeared to

test various approximations. For example, pseudopotentials for the LDA were presented for

atomic numbers Z=1-94, which required the calculation of the corresponding all-electron
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atoms [2]. To examine the range validity of pseudopotentials in quantum Monte Carlo

calculations, atoms with a single valence electron for Z=1-94 were considered within the

non-relativistic local-density approximation [9]. Binding energies of atoms withZ=1-40 for

the generalized GW approximation have been compared with those of the LDA and Hartree-

Fock [30]. A comparison of some twelve different density functional approximations including

gradient-corrected functionals, self-interaction corrections, and nonlocal density functionals

was presented for light elements Z=1-18 [7]. While most of the interest of researchers has

centered on advances in density functional theory, there does not seem to have been a recent

effort to present a complete and comprehensive survey of the electronic structure of atoms

within the local density approximation in over three decades [12].

In this article, we present a sample of our results and figures summarizing the results for

Z=1-92. Extensive tables of total energies and eigenvalues in four approximations are now

available on the World Wide Web [17]. Numerical data presented in this paper is in the usual

system of atomic units, in which the mass m and charge e of the electron, and the reduced

Planck’s constant h̄, take the numerical value of 1. The unit of energy in this system is the

Hartree. We calculate the total energies and orbital energy eigenvalues for the ground state

configurations of all atoms and singly-charged cations with atomic number Z ≤ 92 in four

standard approximations: (1) The local density approximation (LDA), (2) the local spin

density approximation (LSD), (3) the relativistic local density approximation (RLDA), and

(4) the scalar-relativistic local-density approximation (ScRLDA). The exchange-correlation

energy functional of Vosko, Wilk and Nusair [35] (VWN) is used, with relativistic correc-

tions due to MacDonald and Vosko [22]. There are, of course, a great number of available

local-density functionals, including those of Perdew and Wang, [26] Perdew and Zunger,

[25] Gunnarsson and Lundqvist, [10] Kohn and Sham, [16] Slater [31] and Wigner. [33] Our

purpose here is to create highly precise benchmarks results for one commonly used func-

tional rather than to compare results among the available local-density functionals. In this

study, we obtained previously existing codes, and modified them to implement the same

density functional, improve numerical accuracy, and regularize input and output. One code
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was originally written as a Hartree-Fock atomic structure program, and so required more

substantial modifications.

The results presented here derive from four codes, written independently and extensively

compared and tested. These were found to give results of good mutual consistency, provided

that the numerical approximations within each code were varied until a very high degree of

convergence was obtained within each code. One of the authors ran three of the codes, and

another ran the fourth to minimize the chance of an input error automatically propagating

to all the codes. The authors of the four codes are Sverre Froyen, Donald Hamann, Eric

Shirley, and Ilia Tupitsyn and Svetlana Kotochigova. Our target for the precision of the

calculation was 1 µHartree in the total energy. We have managed to attain consistency

between the independent results at a level that allows us to quote the absolute accuracy for

the total energies presented here as 1 µHartree.

II. PROCEDURE

All calculations are all carried out in the framework of generalized Kohn-Sham [16] theory.

We use the central field approximation. We limit our calculations to the ground electronic

configurations of the first 92 neutral atoms and singly-charged cations of the periodic table.

In cases of partially filled electronic subshells, fractional occupancies are assigned to orbitals

with different azimuthal quantum number m to accomplish a spherical averaging of the

charge distribution. In the case of RLDA, this extends to population-weighted averaging

over subshells with the same orbital angular momentum ` but different values of total angular

momentum j. This choice maximizes the agreement with the ScRLDA calculation which

makes the same assumption.

In the LDA, one solves the Kohn-Sham equations

[−
1

2
∇2 + v(~r)]ψi(~r) = εiψi(~r),

with
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v(~r) = vext(~r) +
∫
d~r ′

ρ(~r)

|~r − ~r ′|
+ vxc(~r).

The charge density ρ is given by

ρ(~r) =
∑
i

|ψi(~r)|
2,

where the sum is over the occupied orbitals indexed by i. The external potential, vext(~r)

is due to the nucleus in the atomic case, i.e., it is vnuc = −Z/r. The exchange-correlation

potential, vxc(~r), is a function only of the charge density, i.e., vxc(~r) = vxc(ρ(~r)). For the

LSD, a spin-degree of freedom is included [34]; we consider only collinear spin polarization

(i.e., the spin is polarized only on the z-axis).

The various parts of the total energy are given by:

T = −
1

2

∑
i

∫
d~rψ∗i (~r)∇

2ψi(~r),

Eenuc =
∫
d~rρ(~r)vnuc(~r),

Ecoul =
1

2

∫
d~rd~r ′

ρ(~r)ρ(~r ′)

|~r − ~r ′|
,

and

Exc =
∫
d~rρ(~r)εxc(ρ),

where εxc(ρ) is the exchange-correlation energy per particle for the uniform electron gas

of density ρ; T is the kinetic energy, Eenuc is the electron-nucleus energy, Ecoul is the self-

interaction of the charge density viewed as a classical continuum, and Exc is the exchange-

correlation energy. This approximation for Exc is the principal approximation of the LDA.

In the LSD, these formulas apply with a separate accumulation of the charges with up and

down spins.

The relativistic local-density approximation [28] (RLDA) may be obtained from the

(nonrelativistic) local-density approximation (LDA) by substituting the relativistic kinetic
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energy operator −ih̄c~α · ~∇ for its nonrelativistic counterpart −1
2
∇2 and using relativistic

corrections to the local-density functional. In practice, for the RLDA (and the scalar-

relativistic local-density approximation or ScRLDA) the kinetic energy is obtained from

T =
∑
i

εi −
∫
d~rρ(~r)v(~r).

The relativistic wave functions are given by a four-component Dirac spinor at each point in

space. The radial equations which are solved by our codes are

dF

dr
−
κ

r
F = −α(ε− v(r))G,

dG

dr
+
κ

r
G = α(ε− v(r) + 2α−2)F,

where ε is the eigenvalue in Hartrees, and α is the fine structure constant; ε = 0 describes a

free electron with zero kinetic energy. The functions G(r) and F (r) are related to the Dirac

spinor by

ψ =

 G(r)r−1Yκm(r̂)

iF (r)r−1Y−κm(r̂)


where Yκm(r̂) is a (2-component) Pauli spinor [3].

Dirac’s κ quantum number, along with the azimuthal quantum number m, determines

the angular dependence of a state. Of the values used in this work, κ = −1,−2,−3 and −4

correspond to s1/2, p3/2, d5/2, and f7/2 states; and κ = 1, 2 and 3 correspond to p1/2, d3/2,

and f5/2 states, respectively. The charge density is obtained from ρ(~r) =
∑
µ |ψµ(~r)|

2 where

µ runs over the four components of the Dirac spinor.

The scalar relativistic approximation is often used for moderately heavy atoms to de-

scribe some of the effects of relativity without increasing the number of degrees of freedom.

Specifically, it is possible to neglect the spin-orbit splitting while including other relativistic

effects, such as the mass-velocity term, the Darwin shift, and (approximately) the contribu-

tion of the minor component to the charge density.
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Koelling and Harmon [15] have proposed a method to achieve this end, which we call

the scalar relativistic local density approximation (ScRLDA). This is a simplified version of

the RLDA. The equations to solve are:

d2G

dr2
−
`(`+ 1)

r2
G = 2M(v(r)− ε)G+

1

M

dM

dr

(
dG

dr
+
〈κ〉

r

)
,

where 〈κ〉 = −1 is the degeneracy-weighted average value of the Dirac’s κ for the two

spin-orbit-split levels, and ε is the eigenvalue in Hartrees, with the same meaning as in the

RLDA.

The parameter M is given by

M = 1 +
α2

2
(ε − v(r)),

where α is the fine structure constant. The charge density is related to G by the formula,

r2ρ(r) = G(r)2 +
1

(2Mc)2

[
G′(r)2 +

`(`+ 1)

r2
G(r)

]

where the contribution due to the minor component is given by the second and third terms.

A. The local density functional

The local density approximation (LDA) requires that the exchange-correlation potential

be given as a function of the electron density at a given point in space. The local-spin

density approximation (LSD) is similar, with the exchange-correlation potential being given

as a function of two variables, the density of up- and down-spin electrons at a given point

in space. For atoms, the spin-polarization direction is a constant throughout the atom,

which simplifies the formalism. For our study, we use the form of the exchange-correlation

potential given by Vosko, Wilk, and Nusair [35]. The form is a fit to the Ceperley-Alder

electron gas study [4]. The VWN functional reproduces the random phase approximation

(RPA) results for a uniform electron gas in the high density limit, it reproduces the spin-

stiffness constant calculated in the RPA in the paramagnetic limit of a uniform electron gas,

and it is uniformly differentiable as a function of the electron density. It is also in standard

7



use, or available as an option, in many electronic structure codes, and thereby provides a

convenient reference potential for checking the accuracy of numerical calculations.

The exchange term, as calculated in the RPA, is given by

εx(rs, ζ) = εPx (rs) + [εFx (rs)− ε
P
x (rs)]f(ζ). (1)

The electron gas parameter rs, the spin polarization ζ , and the ferromagnetic and param-

agnetic exchange energies, εFx (rs) and εPx (rs) are defined as

rs =
(

3

4πn

)1/3

,

ζ = (n↑ − n↓)/n,

εPx (rs) = 2−1/3εFx (rs) = −3
(

9

32π2

)1/3

r−1
s ,

and f(ζ) is given by

f(ζ) =
(1 + ζ)4/3 + (1− ζ)4/3 − 2

2(21/3 − 1)
;

where n is the electron number density (implicitly a function of the spatial coordinates),

and n↑ and n↓ its corresponding spin-up and spin-down components (n = n↑ + n↓). Note

that f(0) = 0 and f(1) = 1.

The correlation energy is given by

εc(rs, ζ) = (1− f(ζ)ζ4)εPc (rs)− f(ζ)(1− ζ4)
αc(rs)

f ′′(0)
+ f(ζ)ζ4εFc (rs).

The polarization interpolation, which is more complicated than the interpolation used for

the exchange in Eq. (1), obtains the RPA results for the spin stiffness in the paramagnetic

limit. εPc (rs) = F (rs;A, x0, b, c) with the four parameters taken from the “Paramagnetic”

line in Table I. (Similar definitions hold for εFc and αc.) The function F is given by

F (rs;A, x0, b, c) = A
{

ln
x2

X(x)
+

2b

Q
tan−1 Q

2x+ b

−
bx0

X(x0)

[
ln

(x− x0)
2

X(x)
+

2(b+ 2x0)

Q
tan−1 Q

2x+ b

]}
,
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where we have x = r1/2
s , X(x) = x2 + bx+ c, Q = (4c− b2)1/2. The parameters x0, b, and c,

given in Table I, are used to create three instances of F .

The exchange-correlation potential is given by

Vxc(n) =
d[n(εx + εc)]

dn
.

We use this form in all of the codes in this study. To avoid errors in the codes, the associated

subroutine was recoded independently for one of the codes, although the other three codes

shared a common subroutine.

For the RLDA and ScRLDA, we use the correction to the exchange proposed by Mac-

Donald and Vosko [22]. (An alternative functional would give similar results [28].) They

sought to include, in an approximate way, corrections to the static Coulomb interaction such

as the retardation of the Coulomb interaction and the magnetic interaction between moving

electrons. In their scheme, the exchange energy is partitioned as

Exc[n] = EDF
x [n] + ET

x [n] + Ec[n],

where n is the number density of electrons. Here, DF refers to the “Dirac-Fock” model; T is

for “transverse” and represents the terms which are first order in the fine structure constant

α. We did not consider relativistic corrections to the correlation [29].

Their corrections are multiplicative, i.e.,

εDFx (n) = ε(n)φC(n)

and

εTx (n) = ε(n)φT (n),

where ε(ρ) is the non-relativistic exchange energy density. Only the sum,

φC(n) + φT (n) =

1− 3

2

(
βη − ln(β + η)

β2

)2
 ,

with β = vF/c = (h̄/(mc))(3π2n)1/3 and η = (1 + β2)1/2, enters into the final formula
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εxc[n] = ε(n)[φC(n) + φT (n)] + εc[n].

(The Fermi velocity is denoted vF .) At large density, the sign of the correction is negative,

i.e., the exchange potential becomes repulsive.

B. Radial grids

Suitable choice of a radial grid is key to obtaining accurate numerical solutions of the

integro-differential equations of density-functional theory. The codes make different choices

for the radial grid. Two codes make perhaps the simplest choice, an exponentially increasing

grid

rn = rmin

(
rmax

rmin

)n/N

with three parameters: the minimum radius, rmin, the maximum radius, rmax, and the

number of intervals, N . The application of the exponential grid to the atomic Schrödinger

equation has been discussed by Desclaux [6]. For one code we used N = 15788, rmin =

1/(160Z), and rmax = 50. (All distances are in units of the Bohr radius.) Another code

used N ≤ 8000, rmin = 10−6/Z, and rmax = 800Z−1/2; in this case, the energies were

extrapolated to n→∞ using an N−2 or N−4 dependence of the error resulting from finite

N , depending on the quantity in question.

Another code involved a grid which was nearly linear near the origin, and exponentially

increasing at large r,

rn = a(eb(n−1) − 1),

which is determined by three parameters, a, b, and N . This grid includes the origin explicitly

as r1. In this case, we took a = 4.34 10−6/Z, b = 0.002304, and rmax = 50, leading to

N = 7058 for H, increasing to N = 9021 for U, and to r1 = 10−7 for H, decreasing to

1.1 10−9 for U.

A fourth code involved the change of variable
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ρ = ln r.

A uniform grid is taken in the transformed variable from ρ(rmin) to ρ(rmax) where the

parameters are taken to be rmin = 0.01e−4/Z, for atomic number Z, and rmax = 50. The

number of points increased from N = 2113 for H to N = 2837 for U. The density of points

chosen in the latter two codes — linear near the origin and exponentially increasing at large

r — is similar to that suggested from theoretical considerations [19].

III. RESULTS

The codes had different functionality, and so different subsets were used to treat each

case. Ultimately, we used 4 codes for the LDA results, 3 for LSD, 3 for RLDA, and 2 for

ScRLDA.

One goal of this study was to obtain total energies accurate to 1 µHartree across the peri-

odic table (i.e., better than a part in 1010 for U whose RLDA total energy is −28001.132325

Hartree); this goal was met. The only exact analytical results available to us are the total

energies of one-electron atoms as given by solution of the Schrödinger equation (which are

identical to orbital energy eigenvalues). We found that, in all cases, these energies were

reproduced to the numerical accuracy of the computer for radial grid parameters similar to

those used in our production runs. Thus, our basis for quoting the absolute numerical accu-

racies given here derives, first, from establishing the accuracy of one-electron calculations,

and second, from observing consistency of the results of independent calculations, which was

seen to improve systematically as the numerical grids were refined. The standard deviation

σ of the total energies for the calculations among the various codes increase somewhat with

the atomic number Z, but in no case does it exceed 0.5 µHartree; no two codes’ results for

total energy differ by more than 1µHartree in any case. The maximum eigenvalue devia-

tions are 2 µHartree, and the maximum deviations for parts of the total energy (e.g., kinetic

energy) are 8 µHartree.

11



A. Total energies and energy differences

As an example, we present the total energy and its decomposition as well as the eigen-

values for neutral Fe (Fe I) in Table II. Similar data is available for elements with Z=1-92

and their singly-charge cations via the World Wide Web [17].

Various quantities may be considered across the periodic table. Such plots have been

made before, e.g., by Herman and Skillman [12] or Cowan [5] for empirically-corrected

Hartree-Fock results.

The total energy calculated within the LDA and RLDA vary strongly with Z. To gain

insight, we note that the leading behavior of the nonrelativistic total energy is given by

Thomas-Fermi theory in the large Z limit [21]. The quantity Z−7/3E has much less variation

than E itself, as shown in Fig. 1. The ScRLDA is seen to capture the majority of the energy

difference between the LDA and the RLDA, indicating that the neglect of the (traceless)

spin-orbit energy has been performed in a sensible way.

The Thomas-Fermi theory is shown as constant in Fig. 1. The first three leading terms

in a series in Z−1/3 of the exact total energy for the interacting many-electron large Z atom

are known:

E(Z) = −(c7Z
7/3 + c6Z

6/3 + c5Z
5/3 + ...)

with c7 = 0.768745, c6 = −1/2, and c5 = 0.2699 Hartree [24]. These three terms are

compared to our LDA results in Fig. 2. The agreement is remarkable given the simplicity

of the LDA; indeed, the LDA apparently recovers these three terms. In order to obtain this

agreement, the exchange-correlation terms have to be approximately correct. For U, the

exchange-correlation energy is some 425 Hartree, but the Z−1/3 expansion and our results

differ by about 12 Hartree, i.e., less than 3% of the exchange-correlation energy. The Hartree-

Fock results [8], also shown in Fig. 2, are quite similar to the LDA results computed here.

Ref. [8] suggests that some of the oscillatory deviations shown in Fig. 2 may be due to the

inadequacy of the three-term expression for E(Z) rather than the Hartree-Fock calculation.
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The spin-polarization energy is shown in Fig. 3. ¿From the point of view of atomic

energies, the energies within the LSD track those within the LDA rather closely because

the bulk of the energy comes from inner electrons which have nearly the same description

in both theories. By construction, the theories give identical results for closed shell atoms.

Nevertheless, the energy differences are large on the scale of chemical energies, ranging up

to several electron volts (tenths of Hartrees). Aside from the very strong effects of shell

structure, the trends which may be seen are: a peak in the spin polarization energy always

occurs for half-filled shells; the spin-polarization energy is always largest for the first shell of a

given orbital angular momentum (i.e., 1s, 2p, 3d, and 4f); and the spin-polarization energy

increases with increasing angular momentum. However, the increase in spin-polarization

energy with the orbital angular momentum is substantially, but not exclusively, accounted

for by the larger number of electrons participating. The peak spin polarization energies occur

for the elements H (1s1), N (2p3), Mn (3d5), and Gd (4f 7), for which the spin polarization

energies are 33.000, 111.783, 194.721, and 361.711 mHartree, respectively, or 33.000, 37.261,

38.944, and 51.673 mHartree per electron in the half-filled shell.

In Fig. 4, experimental ionization potentials [23] are compared to the total neutral-cation

energy differences within the LDA and LSD. Both theories reproduce the important trends

of shell structure out to large Z. The LSD captures a drop or shoulder in the curves in the

middle of the 2p, 3p, and 4p series but not the 5p, where relativistic effects move the drop to

lower Z. The enhancement in the ionization potential at Gd in the middle of the 4f series is

also captured by LSD. The RLDA does not systematically out-perform the LDA at large Z

presumably because spin-polarization effects are omitted. Significant discrepancies between

experiment and theory exist for the 3d, 4d, and 5d series in all approximations considered

in this study.
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B. Eigenvalues

The eigenvalues for all orbitals calculated within the LDA are shown in Fig. 5. The zero

eigenvalue is the threshold for the continuum, i.e., zero kinetic energy and zero potential

energy. For large Z, the core orbitals tend toward a hydrogenic form, i.e., the s, p, d, and

f levels are degenerate for the same n. The valence orbitals always have a richer structure;

they do not necessarily have the same ordering for different Z.

Because the four approximations give similar results, the energy differences are discussed

below. The spin-orbit splitting is shown in Fig. 6 for p, d, and f levels. The splittings are

seen to grow with a power law which is faster than the Z4 of a hydrogenic orbital, e.g., Z5.0

for the 2p level. When open shell effects are important, the comparison to experiment can

be quite poor, as noted earlier by Herman and Skillman [13]. Multiplet effects which are

more complicated than the spin-orbit splitting of a one-electron picture may dominate.

In Fig. 7, the difference between the LDA eigenvalue and the degeneracy-weighted average

of the RLDA eigenvalues is shown. The trends are less regular than those in Fig. 6, because

there is some opportunity for cancellation of errors. Specifically, the RLDA in a fixed

potential leads to orbital contraction. For the outer orbitals, this implies more screening

which will reduce or even outweigh the tendency to contract. Not surprisingly, the eigenvalue

differences increase rapidly with Z, and decrease rapidly with n and `. Fig. 8 offers a similar

comparison between the ScRLDA and the RLDA. The differences are usually at least half

an order of magnitude smaller than the previous comparison, indicating that the ScRLDA

does indeed capture most of the relativistic effects.

The effects of spin polarization on the eigenvalues do not seem to follow a simple rule.

The magnitude of the eigenvalue shift varies strongly with the spin-polarization, peaking

for half-filled valence shells. The individual eigenvalues shift by an amount comparable to

the spin-polarization energy shown in Fig. 2. The strongest polarization splitting does not

necessarily belong to the valence eigenvalues. The 3d, 4d, and especially 4f orbitals are

inside the atom; some of these outer core orbitals are more strongly affected in absolute
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terms than the valence orbitals. There is no apparent systematic ` dependence in the shifts.

For open-shell atoms throughout the periodic table, the LSD eigenvalue associated with

the majority spin lies below the minority spin eigenvalue in almost all cases. Perhaps it is

surprising to note that the average eigenvalues for the core orbitals are shifted upward in the

LSD. This may be seen for the case of Fe in Table II. To understand the flavor of these results,

consider the case of Li. In the LDA, the 1s and 2s eigenvalues are −1.87856 and −0.10554

Hartree, respectively. In the LSD, the 2s eigenvalue is lowered to −0.11631 Hartree, as one

might expect from the enhanced exchange-correlation potential. The 1s eigenvalues split,

and become −1.87493 for the majority orbital and −1.86717 for the minority orbital. The

majority 1s eigenvalue is lower than its minority counterpart as one might expect. Again, it

is perhaps surprising that the eigenvalues themselves are both higher than in the LDA. The

1s orbital is largely inside the 2s orbital; for an estimate, it may be taken as completely inside

the 2s orbital. The 2s orbital radius (inverse of the first inverse moment) drops from 2.828

bohr to 2.754 bohr. The shift in average radial position of the 2s orbital leads to a constant

shift in Coulomb potential in its interior by +9.5 mHartree. The average 1s eigenvalue shift

is +7.5 mHartree, a comparable value. Fig. 10 indicates that these shifts are larger for the

inner orbitals. For the valence and outer core orbitals, the exchange-correlation splitting

induced by LSD tends to outweigh this Coulomb effect. Deeper in the core, the Coulomb

effect tends to be larger than the splitting, and both eigenvalues are shifted upward.

There are a few exceptions to the rule that the majority-spin orbital eigenvalues are

below the minority-spin counterparts. However, even when there is an anomalous sign,

usually the effect is less than 200µHartree and is limited to the 1s (or occasionally the 2s)

orbital. Copper is an exception to this rule, with the 2s, 2p, 3s, and 3p minority spin orbitals

lower than their majority spin counterparts by 1.0, 0.6, 1.0, and 0.4 mHartree, respectively.
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IV. CONCLUSIONS

We have calculated the total energy and eigenvalues of neutral atoms and their singly

charged cations across the periodic table (Z = 1-92) in four approximations: the local-

density approximation (LDA), local-spin-density approximation (LSD), the relativistic LDA

(RLDA), and the scalar-relativistic LDA (ScRLDA). We obtained agreement with 2 to 4

codes in each of these approximations to 1µHartree in the total energy; we also obtained

similar agreement with the analytic solutions for the hydrogen atom using these codes. In

this way, we hoped to achieve high reliability and high precision for the fundamental issue

of the total energies of atoms within the local density approximation and its major variants.

An overview has been presented in this work; all total energies and eigenvalues are available

on the World Wide Web [17].

Here, we have presented the total energy in the large Z limit and have shown the LDA

is in excellent agreement with an exact expansion in powers of Z−1/3. The ScRLDA total

energies are seen to give a very good account of the RLDA total energies despite having

no spin-orbit term. Experimental ionization potentials are presented; the LSD gives the

best agreement of the approximations presented across the periodic table; in particular it

accounts for the energetics near half-filling. Selected trends across the periodic table have

been presented to summarize the importance of the various effects on both eigenvalues and

total energies.

The tables on the Web page may be used in several ways: as points of calibration for

persons writing or using their own atomic codes, to generate excellent starting guesses in

iterative atomic LDA programs, to estimate the magnitude of various effects (e.g., spin-orbit

splitting) for particular elements which may aid researchers choosing an approximation in

a molecular or solid-state calculation. Moreover, having a large data set on-line may aid

studies of statistical or asymptotic characteristics of total energies and eigenvalues in the

atomic central field problem of the local density approximation.
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TABLES

TABLE I. The parameters for the Vosko-Wilk-Nusair correlation functional.

A x0 b c

Paramagnetic εPc 0.0310907 −0.10498 3.72744 12.9352

Ferromagnetic εFc 0.01554535 −0.32500 7.06042 18.0578

Spin Stiffness αc −1/(6π2) −0.00475840 1.13107 13.0045
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TABLE II. Total energy and eigenvalues in Hartree for Fe I 3d64s2 in four approximations; all

digits shown are significant. For the LSD, two eigenvalues are given for each level; the lower energy

corresponds to spin polarized in the majority-spin direction. For the RLDA, the two eigenvalues

correspond to spin-orbit-split orbitals; the order is p1/2 then p3/2, and d3/2 then d5/2.

LDA LSD RLDA ScRLDA

Etot −1261.093056 −1261.223291 −1269.229080 −1269.203563

T 1259.553429 1259.697871 1284.299765 1281.820878

Ecoul 535.295832 535.733366 537.849537 537.639306

Eenuc −3003.082484 −3003.635009 −3039.130268 3036.447136

Exc −52.859833 −53.019519 −52.248113 −52.216611

1s −254.225505 −254.203661 −255.897914 −255.954644

−254.202872

2s −29.564860 −29.577122 −29.990901 −29.999533

−29.501754

2p −25.551766 −25.555535 −25.920510 −25.623699

−25.498083 −25.464756

3s −3.360621 −3.415446 −3.428882 −3.429663

−3.263810

3p −2.187523 −2.241326 −2.238116 −2.200495

−2.093198 −2.181222

3d −0.295049 −0.343804 −0.289195 −0.285808

−0.213912 −0.283569

4s −0.197978 −0.209988 −0.201119 −0.201138

−0.182613
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FIG. 1. The total energies of neutral atoms within the LDA, RLDA, and Thomas-Fermi theory,

[32] scaled by a prefactor of Z−7/3 (solid lines) are referred to the left axis. The Thomas-Fermi en-

ergy, 0.768745 Z7/3 Hartree, is a constant on this graph. The differences in total energy LDA-RLDA

(dashed line) and ScRLDA-RLDA (dotted line) are referred to the right axis.
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FIG. 2. The differences in total energy: the Thomas-Fermi with corrections in Z6/3 and Z5/3

(Ref. [8,24]) minus the LDA energy. The solid line gives the energy difference of the total LDA

energy from the corrected Thomas-Fermi (CTF) theory (solid line) and the difference of the

Hartree-Fock (HF) total energy from (CTF, dashed line, from Ref. [8]). The omitted values of

the relative energy difference for the solid curve are: H 20.8%, He 3.7%, Li 2.4%, Be 1.4%, B-F,

<1%.
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FIG. 3. The spin polarization energy for neutral atoms, i.e., the difference ELDAtot −ELSDtot . The

labels refer to the principal partially filled shell for a given Z. The spin polarization is strictly

zero for the closed shell atoms (i.e., He, Be, Ne, Mg, Ar, Ca, Cu, Kr, Sr, Pd, Cd, Xe, Ba, Yb,

Hg, Rn, and Ra) The maximum spin-polarization energy occurs for Gd, which has a half-filled 4f

shell. The 5s shell fills twice, first for Rb and Sr before the 4d series and second for Ag and Cd

afterwards.
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the plot. Elements of the VB series (which have a half-filled valence p shell) are indicated on the

lower panel.
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FIG. 6. Spin-orbit splittings i.e., the eigenvalue difference of p3/2−p1/2, d5/2−d3/2, or f7/2−f5/2

within the RLDA and by experiment (differences in x-ray absorption thresholds) [36] for various p

levels (upper figure) and d and f levels (lower graph).
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FIG. 7. Differences of eigenvalues between the RLDA and the LDA for selected levels. Here,

the RLDA eigenvalues are given a population-weighted average over the two spin-orbit split pairs.

The effect of relativity increases with Z, but decreases with quantum numbers n and `.
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FIG. 8. Differences of eigenvalues between the ScRLDA and RLDA for selected levels. As in

Fig. 7, the RLDA is the population-weighted average of the two spin-orbit split pairs. The ScRLDA

is at least half and order of magnitude than the LDA for obtaining the averaged RLDA eigenvalues

for Z ≥ 30.
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